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Abstract

A ground based, microwave radiometer system is being completed at
IRL which will be used to measure mesospheric water vapor. The present
study addresses itself to the basic radiative transfer of this experiment

and to the interaction between the atmosphere and electromagnetic

radiation.

Using a classical mathematical analysis of the data inversion
process an estimation of the true information content of the received

data is produced. This process depends critically upon the structure

of the weighting functions as was anticipated.

The result of this study is that the present radiometer system

should have four clearly independent pieces of information per profile,

with a fifth piece possible, for realistic estimates of system errors.

P i T Y St -




iii

List of Tables

Table I (Eigenvalues A and Corresponding Channel/Kernel Numbers k). 1

Table II (Channel/Kernel Frequency).

ry

-




List of Figures

Fig. 1: The 25 normalized kernels plotted against height, zero zenith
angle, emission case.

Fig. 2: The four independant (information containing) kernels plotted
versus height (solid curves); a possible fifth, information
containing, kernel (unconnected symbols).

Fig. 3: The estimated number of independant kernels, dependant upon
the number of measurement, for different possible error
levels.




Acknowledgements

The author wishes to thank the Office of Naval Research for its

support of this project under contract number N00014-79-C-0610.




1. Introduction

Information on the vertical profiles of each element existing in
the atmosphere can provide a better understanding of the atmosphere. This
is especially true for the water vapor content which plays a dominant role
in photochemistry in the middle atmosphere (stratosphere and mesosphere).
Therefore, investigating the concentration of water vapor in the atmosphere
is very important.

There are two major ways to do the measurements: in-situ, and remote
sensing techniques. The vertical profiles of H»0 in the lower atmosphere
can be determined by balloon sounding. However, in the upper atmosphere
where the H,0 content is much less compared with the H,0 in the troposphere,
contamination may cause difficulties in determining the correct amount.
Therefore, the remote sensing technique, which can allow us to study the
atmospheric region without disturbing it, is a very attractive solution.
Here we choose the microwave rather than the IR remote sensing technique
to investigate the H,0 content in the upper atmosphere. The major reason
is that the characteristic spectrum of H,0 has many more and closer spaced
absorption lines in the IR region than in the microwave region, and the
collisions among air molecules and gases will significantly broaden the
absorption bands, thus the overlapping among the absorption bands decreases
the vertical resolution. Besides, the microwave radiometer can detect at
lower power level and penetrate through clouds which are opaque to IR.

According to kinetic theory (Goody, 1964), the lines of the char-
acteristic spectrum of each molecule will be broadened both by collision
effects between molecules and by Doppler broadening. The former, depending
on the pressure of gas, dominates in the lower atmosphere and decreases
exponentially with height, while the latter, depending upon random

molecular motions hence temperature, contributes significantly only at




levels above 80 Km. The Hy0 content in the atmosphere is found mostly
within the troposphere having only a very small contribution at higher
levels. The corresponding spectrum of this Hy0 concentration should be
much more smooth and broadened at lower levels, narrowing to a small
amplitude but much sharper peak at upper levels. Such differences in the
half-width of the spectral peak can allow a microwave radiometer to be set
up at ground level and measure the radiation being absorbed or emitted

from H,0 throughout the atmosphere.

2. Radiative Transfer

Water vapor has only two characteristic lines existing in the microwave

region -- 22 GHz, 183 GHz. The 183 GHz line is much more intense but its
attenuation through the troposphere is so strong that it can only be used
from platforms aloft, such as by sateliite through a limb viewing measure-
ment, For a ground-base microwave measurement of H,0, one must use the
rotational line centered at 22 GHz. The vertical resolution is determined
by the spectral line width and the bandwidth of the radiometer, thus
setting the lower height limit of H,0 content one can determine. (The
radiometer in question is constructed with a filter bank centered at
22.235 GHz, covering a half width of 2.5 MHz, using 50 channels;

the predicted measurable height range is 50 to 85 Km.)

The wavelengths of the microwave region range from 10 cm to 1 mm,
which is in the Rayleigh~Jeans region of the Plank black-body function.
This provides a simple relationship between the emission power of the
medium and its thermal absolute temperature; that is, the emission power
is proportional to_the temperature and also to the concentration of the gas
at that level. The opacity of the atmosphere to radiation is due to the
absorption and scattering of air molecules (through their vibrational and

rotational motions), and the interaction between air molecules and radiation




field may emit quantized energy. Since the scattering effects are much
smaller than the other two, only the absorptions and emissions are con-
sidered here. Assuming local thermal equilibrium (LTE) in the atmosphere,
the linear relationship between the measured intensity of the radiation
and the atmospheric (thermal) temperature allows one to specify the

radiative transfer in the following form, at frequency v:

T, = T ) 4 [ 1(u,6) k(v 8) e T M s (1)
h
TB(V) = the brightness temperature
Ts(v) = the thermal temperature of an external source
T(v,s) = the kinetic temperature of atmosphere
K(v,s) = the total absorption coefficient
ds = the optical path length

o

and T(V) = [ K(v,s)*ds = the optical depth (or opacity),
h

On the right hand side of eq. (1), the first term is the transmission of

external radiation S and the second term involves the emission of the medium.
In order to simplify the nonlinearity between the absorption coefficient

and the optical path, some approximations can be made. Consider the atmosphere

to be a series of homogeneous, 1 Km thick layers, and take the average value of

temperature and pressure in each layer to estimate the cross section of the

constituent (¢). The refraction effects in the atmosphere which have been

calculated are too small to be included (Longbothum, 1976). 1In this case,

the effective emission of the medium (in the radiative transfer equation

which involves the integration over the range of interest)can be written as

the sum of the contributions from each layer attenuated through all the

layers below. That is:




Ti-1 3
T (s ~T r(v,s.ﬂ 4 -1(v,s,) 2
. Ti(a),exp i1 j !'tl_e i ) (2) q

f T(v,s) K(v,s) e—T(v)ds z
h i

W1

and thus where Ti is the average temperature in the layer i, and i

; Ju SO g
t(v) = I r(v,si) =z K(v,s)+ds = I [K(,si+1)+K(v,s{)]1"8s J
i=l i=l i=l
s(v,hi) 2 (3)

where N is the number of layers.

Therefore, the total brightness temperature is:

N -1 -

T (v) = T (v) exp TE T(V,8) T (v) exp = L T(v,8) -(1—«;'“"’31)
B S j= N by=1

i+
- - - - (4)

o2

i

For an absorption experiment, the second term on the right hand side

of the eq. (4) 1is negligible. In order to avoid the uncertainties in the

©a e mameim e

solar temperature at the wavelengths of the microwave region, the method

ey

of calculating the ratio of brightness temperature at two different zenith

angles is preferred. Operating the ground base radiometer at zenith

e ——— e

i angle (¢) lower than 800, allows one to approximate the spherical earth
geometry by a plane earth, i.e. ds can be written as sec ¢:dz; then we }

get:

In(T, /T, )

Y = By B (5)
1 j (sec. ¢2 - sec. ¢1)

where we define:
Zip1 V)
T (v,zj) = ( K(v,z) * dz
PR,
]
and the superscript 1 and 2 stand for the cases at different zenith

angles ¢;, and ¢,. The quantity of the right hand side of the eq. (5)

can be determined directly through measurements, thus defined as g(v)

or g, where 1 stands for the different frequency dependence. §




Generally, the absorption coefficient K(v,s) for optical path s at
frequency v can be written as the product of the volumetric concentration
of the constituent n(s) and the total extinction cross section o(v,s).
The weak dependence of K(v,s) on n(s) has been tested over a range
which corresponds to volumetric mixing ratios of 1 to 18 ppm. K(v,s)
varies only from 0.992 to 0.995 Km~! over this range, to the first
approximation it is separable. Thus we apply the mean value for each

layer and the optical path becomes

Zj+1(v) _ o(v,zj) + c(v,gi+l)
r(v,zj) = | K(v,z) dz = [n (zj)- 3 18z, (6)
zj(v)

= WFi(zj)‘H(zj)

. Az R
where WFi(zj) is defined as 2 [c(v,zj) + c(v,zj+1)] and is called the

ith weighting function. Therefore the relation becomes,

N
=3I WF,(z.,)n (7)
B = I MRz ()

Consider the emission experiment; the second term on the right-

hand-side of eq. (1) must then dominate. This term can be approximated

as: .
i-1

( M
T (l-e—T(v’siB.exp%"gf T(v,s,) + T r(v,sj)]i (8)
L oi=

T 1(v) =

i=M+1
whei : TBl(v) = the upper atmospheric contribution to the brightness temperature
in which we are interested; thus equals the total brightness temperature, TB(V)’
minus the lower atmosphere contribution which can be thought of as a base
line Sgnd is assumed toie?compass layer 1 to layer M). Since t(v,si)<<1

and L (v, Sj) >> L 1(v, sj), the equation becomes:
1=1 : j=M+1

Py




an appropriate inversion method, the water vapor content (H(zi)) in either

case can be determined.

3. Information Content

A
, M \
N { As !
= - I t(v,s. N i -
T (v) =1 T,.expi .= 73T == - [o(v,s,) + o(v,s, )] * n(s,)
B 1=M+1 i . j=1 2 *71 *Ti+l i
A N —
= I WF(v,si) . n(si) €D
{=M+1 b
And here WF(v,si) for the emission case corresponds to H
N by
I; T-expj' k T(V’Sj) : A—sl « lo(v,s.) + a(v,s )] l
i=M+1l © (=1 2 et S S S 1
It can also be written in a more general form as;
N _ 1
g, =L WF_ (S,)-n(S,) (10) 1
Py J ‘
where i stands for the frequency dependence, gand sj =2, * sec ¢. With
E
4
|

Generally, an indirect remote sensing measurement has the following

form:
b

g, =/ k, (x) - £(x)dx (11)
a
It relates measurement data gy to the inaccessible profile f(x) through
the proper weighting function ki(x) (or kernel, as stated in mathematical
terms) distributed over the region [a,b] in which we are interested. The
different i1 usually represent different frequencies at which the measurement

has been made; and ki(x) can be some kind of optical transmission functions.

However, in using most indirect sensing techniques the atmospheric

measurements show a certain degree of correlation which leads to the
question of the benefit in taking more data points. For example, if
dependence exists among the measurements that may allow one of the i

measurements to be written as a linear combination of the others; such
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a measurement is said to be predictable. If the value predicted is

within some uncertainty envelope which is less than the experimental noise
level, it implies that this value can be predicted better than

measured (within the experimental accuracy). In this case, it would be
redundant to continue the measurement. Therefore, it is worthwhile to
investigate the actual "information content" of such a measurement.

As given by the relationship shown in eq. (11), the dependence of
measurements usually comes from the physical properties of the kernels,
which may not all be linearly independent for all f(x). In this case,
investigating the degree of indpendence among kernels will correspond to
finding the independence of the measurements, thus to determine the extent
of the information contained. There are two advantages of looking into
the independence of the kernels. First, in view of the cost of adding and
analyzing more data points, determining the independence of kernels (and
thus the usefulness of thoss added measurements) can be done before the
measurements have been taken. The same process which provides information
content can also assist one in locating from which channels the information
comes, thus avoiding redundant measurements. Secondly, in view of re-
solution, the closer the relationships among the kernels, the more
difficult will be the inversion of the profile of f(x). To make this
point clear: note that the integral in eq. (11) can be approximated in
numerical quadratic summation form, thus can be written in matrix form
as G = KF, for a finite set of data points and finite measurement
intervals. Highly dependent kernels will make the determinent of the
kernel matrix very small. Therefore, when one wishes to invert the
matrix K in order to find the unknown profile F as in K~lg = F, the error
(including the truncation error of the computer) will be magnified so
much that the information can no longer be obtained. Under such

circumstances. svecial constrained techniques mav be considered.

R I T




The theory of information content of an experiment is solely based
on the presence of noise in the experiment and the nature of the kermels.
In principle, one is looking for a set of a's, which are not all zero
simultaneously, such that. g ay ki(x) = 0. Then one of the kernels
can be written as a linea;“;;;bination of the others, thus it is predictable.
However, the above summation may not vanish in the general case because

there exists some uncertainty, both experimentally and in the numerical

approximations adopted. Hence instead, we search for the set of a's that

N
minimizes I aiki(x) and subjects them to a chosen contraint, say
N i=1
T ai2 = 1. (The absolute magnitudes of the a's are irrelevant.) As
i=1

long as the summation is less than or equal to the noise level for all x
in [a,b], one kernel can be predicted within the experimental accuracy.
Thus the information provided by this kernel will be lost in the noise,
and the number of independent pieces of information must be reduced by
one. An appropriate method to minimize such a quantity (which is a
function of x) is to look for the minimum values of its quadratic form

N
q = J [ z aiki(x)]2 dx, this can be written in vector notation as:
i=1

q = J[g* KGO (x) @) dx = %*[J}\s(x) K*(x) dx] a = a"c a (12)
where a is not a function of x, and 2 %(x) are column vectors. C is

the covarience matrix of k, C = [Jk(x) &*(x) dx]. Applying the eigenvalue

theorem (Courant and Hilbert, 1953) subject to the constraint that
N

z ai2 = 1, the extremum values of q are given by Ai,
i=1
of the covarience matrix C, if 2 is chosen to be the corresponding

the eigenvalues

* x %
normalized eigenvectors Q Thus C = UAU” and g = a Ca = 91 UAU Ei = )\

i’ i

where U, A are eigenvector and eigenvalue matrix, respectfully. Therefore,

the smallest eigenvalue Hn provides the minimum value of q and the magnitude




N
of I aiki(x) for all x in [a,b] is . (Since the covarience matrix

C i;_i positive definite symmetric matrix, the corresponding eigenvalues
are all positive and non zero.) 1If one of the eigenvalues, A, is smaller
than the estimated measurement plus computational error, the number of
independent kernels or information content should be decreased by one.
If p of the eigenvalues are smaller than the noise level, the number
should be decreased by p.

The above statement can be shown clearly though the effect of ki(x)
in 8+ Now consider the error €, contained in the measurement g; as given

i
in eq. (11)

b

84 + e = j ki(x) f(x) dx (13)
a

Assuming kz is predictable, then the corresponding prediction of g, can

be written as a linear combination of the other measurement values g;» as

N
in (pred.) = -1 z (a,8,). The measurement value can be calculated
g p g
% ) i=1,1i48 1 2

by multiplying eq. (13) through by a;s summing all the i's, and readjusted

the terms, we get:

¢ v R p (N )
g, +| = L ae | = — I ag +1{= J[= a k. (x)1f(x)d
2 Lal i=1 i1 ay i=1 i®i a, E 1 i1
i%e (14)

Apparently the first term on the right hand side of eq. (14) is gz(pred-) (an
estimate of gl)' In this case, one can estimate gy closer than one can
measure it, if the second term on the right hand side of the eq. (14) is
less than or equal to the error term (the second term) on the left hand

side of ghe equation, i.e. if

| J (z aiki(x)]'f(x)dx|s|2 aieil (15)
I o1 i

Applying the Schwarz's inequality and the mean value theorem on the left

hand side of the inequality, eq. (15) we find that:

jqiil

e

A
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b N
L

|/

b N
aiki(x)'f(x)dxl26|£ ii aiki(x)dxlz-lfm(x)lz

i=1 1

The minimized quantity, |fb ? aiki(x)dxl2 is the smallest eigenvalue

xm of the covarience matrix g ;:itiplyed by a constant which is determined by the
integral limits. Thus, if |fm(x)|2 has order of magnitude one, and with a
properly adjusted integral scale [0,1], the upper bound of this quantity

would be Am.

Again, applying the Schwarz's inequality on the right hand side of

eq. (15) above:

B aieilzslz aizl'lgeizl
i i i

for an independent randomlydistributed error €., [Z ¢ 2[ =N e |2
it i rms

Generally speaking, for a relative error € [Z eiz| = |E|2. Hence, it is

clear that if A, is "less than" |;‘|2 (or it should be said "much less than",
for there is considerable uncertainty when they are the same order of
magnitude), the noise to signal ratio is large enough that information
cannot be obtained.

Now it is more interesting to know exactly which one or ones of the

kernels is predictable: Surely the best approkimation can be made by
choosing the weakest response kernel. That is, for a given very small

eigenvalue Am’ the correspondent linear combination of kernels can be
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approximated to zero. Therefore, the kernel Kj,whose coefficient has the
largest value, can be thought of as the most weakly represented base function.
Therefore, the corresponding normalized kernal, kj' should be the least
useful.

To make the case simple, and to have a direct measure for A, proper
scaling for g, k, and f is necessary and does not change the relationship
between them. On the other hand, it provides a convenient way to estimate
the relative error. As pointed out earlier, gy can be scaled having an
order of one, then the €; are the relative errors and |gig N (the number
of channels). Scaling can also be done such that !f[zg 1 and the kernels

are normalized. Then eq. (13) can be written as:
. €
% + Ti= (as-) ;{bki(X)-[% -f(x)1dx (16)
Where a, B are proper scaling factors.
Also, the integral limits can be rescaled from O to 1. Without proper
scaling there can be confusion between the comparison of eigenvalues and
the noise levels, which has been pointed out by Twomey (1974) in his earlier
papers.
Such eigenvalue techniques can also be used to directly analyze the
unknown function, f(x), by introducing a new set of orthonormal functioms
¢(x) on which f£f(x) can be projected, then f(x) = If

59

a new orthonormal set of dj(x) must satisfy eq. (11) and should be constrained

-¢j(x). However, such

to ki(x). Therefore in general, dj(x) is chosen as a linear combination of
all the kernels, and the normalization constraint will determine the

correspondent coefficients. It turns out that the best choice of éj(x) is
N
—%: I U, ,k,, where U is the ith element of the eigenvector U

associated
1s1

i

with eigenvalue Xj of the covarience matrix C. Written in matrix form

PR

S STy
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l/z-k(x). With this substitution in the equation
N

it will become @(x) =UA~
AV
(11), one obtains:

£=A-l/2-U*-g (17)
N \

and f(x) becomes:
-1
f(x) = k*(x).U.A -U*og (18)
n x

Obviously, small eigenvalues involved in such an inversion for f(x)
will make it very unstable. But it provides a straightforward way to
investigate the error magnification which is also a criterion in determining
the information content through deleting the measurements which have an
excessive error magnification. (Detailed descriptions can be referred in
Twomey (1977.)

Although we were concentrating on analyzing the information content
of the kernels here, the same method can be applied directly to the
measurement data, which has been done in many cases (e.g. Mateer, 1965). If
there is one eigenvalue which is less than lslz,one measurement can be predicted
better than measured and the information content should be reduced by one.

2, there should be p

If there are p eigenvalues which are less than [%I
redundant measurements. For a total of N measurements, the number of pleces

of independent information will become (N-p).

4, Results and Discussion

The previous analysis has been applied to investigate the information
content of the spectral output of a microwave radiometer used to detect
the Hy0 content in the stratosphere and mesosphere. This spectral output
totals 49 channels, each separated by 50 KHz, ranging from 22.2362798 GHz
to 22.2338798 Ghz, and centered at 22.2350M8 GHz. Since symmetry
exists about the center frequency, the information content analysis need

only to be done for 25 channels. The altitude range was chosen from 50 Km
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to 86 Km., which represents thirty-six,1 Km layers.

Let us first consider the emission experiment case. The 25 kernels,
which have been normalized to unit area for convenience (Fig. 1), were used
to do the eigenvalue and eigenvector analysis of their covarience matrix C. }1
The resulting eigenvalues, as listed in Table 1 (only for the ones whose ;
magnitudes are greater than 1079%), show that for a given 1% relative q
r.m.s. error, four independent pieces of information could safely be drawnm,
however the fifth may be possible as well. The rapidly decreasing magnitude
of the eigenvalues indicates that.improving experimental accuracy doesn't

provide much more, if any, new information. In this case, many of the 25

ey
TN

measurements will be redundant.

The kernels which contribute the most informations are k k

10 kg9

4 where the subscripts represent the

22°

k25’ and to a lesser extent k2

¢
corresponding frequencies: 22,2338798, 22.344798, 22,2349298, 22,2350798 }
and 22.2350298 GHz, respectively (Table II). Their relationship with height ‘
have been plotted in Fig. 2. Since the original kernel functions are reasonably
smooth and very much overlapped (as shown in Fig. 1), it would not be
surprising that they have such limited independence. This means the

measurement can be done as well based on these four (or five) channels as

with all the original 25 channels to within an experimental uncertainty
of about 17%Z. To make this point more explicitly, the same eigenvalue
analysis was applied to an arbitary set of ten channels; specifically
channel numbers 2, 5, 8, 11, 14, 17, 20, 23, 24 and 25 were chosen. The
results are also listed in Table I. For the same noise level, apparently

four pieces of information is derivable. Under such circumstances, it is

obvious that making more measurements does not improve, by much, knowledge

éoncerning the inaccessible profile f£.

5 . - -

i 4 £ P
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In Figure 3 we show that the number of independent pieces of
information which can be derived for various experimental error levels. If
the error lies beyond 5%, there will be only two pieces of information
that could be inferred from such 25 measurements. Therefore, even though
the discussion of error levels cannot be precise, the number of independent
pieces of information is still quite apparent as long as the signal to
noise ratio is much greater than 1. Therefore, increasing the number of
measurements or improving measurement accuracy may not increase the

information content considerably.

5. Zenith Angle Effects

The discussion above was based upon calculations for zero zenith
angle operation. In order to increase the signal to noise ratio, the
radiometer should be operated at lower elevation angles (i.e. to obtain
a longer slant optical path). Therefore, the same analysis has also been
applied to the case of the same 25 channels, but with a 70° zenith angle.
The resulting eigenvalues were extremely close to the first case, thus
for the same relative error it should provide the same number of independent
pleces of information. However, the channels which contribute the most
information do tend to be redistribed slightly toward the center frequency
channel. Since the discussion of information content is based on the
competition between the relative error level and the eigenvalues of the
measurement kernels, one can only expect that lowering the elevation angle
will reduce the noise to signal ratio and may provide one or more additional
pieces of information.

The same 70° zenith angle dependence for the absorption case has

been done, and the previous argument still holds.
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6. Summary and Conclusion

The information content of a microwave radiometer experiment has
been investigated. Since the kernel (or weighting) functions are
reasonably smooth and very much overlapped, the number of independent
pieces of information is much less than the total number of possible
measurement channels. This means that if one tries to use all the channels
in performing the observation, many of the measurements would be redundant.
As for how many independent pieces information can be drawn, this depends
on the relative error of the whole experiment which can be reduced by
lowering the operating elevation angle or improving the instrument itself.
One may argue that taking more data points certainly has some value, but
such improvements may not be significant enough to provide additional
information; in addition the cost of taking and processing more measure-~
ments may be too high. Also, the difficulties of the actual inversion
process are magnified by highly dependent kernels, thus it is worthwhile
to examing the information content and use such results as a guide.

For the current Penn State system four, or perhaps five, independent
pleces of information are attainable with maintenance of reasonably

system accuracy.
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Table I
{Eigenvalues )} and Corresponding Channel/Kernel Numbers k)

ey

— e ——— -
U

Order of A for 10 measurements for 25 measurements
A k A k
1 2.99 x 1071 (k25) 8.40 x 101 (kos)
2 9.81 x 1072 (kp) 1.33 x 1001 (ky) 4
3 1.73 x 1072 (kp3) 3.66 x 1072 (kzp) f
4 3.17 x 1073 (ky7) 5.69 x 10 3 (ky3) |
5 3.47 x 107 % (kay) 7.93 x 107%  (kay) %f
6 5.64 x 1075 (kag) 1.11 x 107%  (kig) ﬂ:
7 5.34 x 10 ¢ (ks) 1.37 x 107°%  (kz3) i;
8 1.48 x 1077 (kyy) 1.34 x 1076 (k3) §
9 2.02 x 1079 (k1)) 1.06 x 1077 (k2)) :;
10 * 6.78 x 1072 (kiq) {;
}

*Eigsnvalues not included in this Table have magnitude much less than
1077,
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Table II (Channel/Kernel Frequency)
, Channel/Kernel Frequency Frequency Offset
b Number (GHz) (MHz)
k, 22.2338798 1.20
ko 22.2339298 1.15
kj 22.2339798 1.10
ky, 22.2340298 1.05
kg 22.2340798 1.00
ke 22.2341298 0.95
ko 22.2341798 0.90
kg 22.2342298 0.85
kg 22.2342798 0.80
kig 22.2343298 0.75 |
ki) 22.2343798 0.70 )4
ki, 22.2344298 0.65 {\
kij 22.2344798 0.60 i:
Ky, 22.2345298 0.55 L
kis 22.2345798 0.50 |
kg 22.2346298 0.45 |
Ky 22.2346798 0.40
kig 22.2347298 0.35
kig 22.2347798 0.30
kog 22.2348298 0.25
ky, 22.,2348798 0.20
kg, 22.2349298 0.15
ko 22.2349798 0.10
Ky, 22.2350298 0.05 :

Ky s 22.2350798 0.00 4
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Table I1 (Channel/Kernel Frequency)

Channel/Kernel Frequency Frequency Offset
Number (GHz) (MHz)
k; 22.2338798 1.20
ko 22.2339298 1.15
k3 22.2339798 1.10
ky, 22.2340298 1.05
kg 22.2340798 1.00
kg 22.2341298 0.95
ko 22.2341798 0.90
kg 22.2342298 0.85
kg 22.2342798 0.80
. ko 22.2343298 0.75
i kyy 22.2343798 0.70
ko 22.2344298 0.65
ki3 22,2344798 0.60
k)4 22.2345298 0.55 )ﬂ
kis 22.2345798 0.50
kig 22.2346298 0.45 4
k7 22.2346798 0.40 f
' kig 22.2347298 0.35 ?
{ Kig 22.2347798 0.30
koo 22.2348298 0.25 .
ko 22.2348798 0.20
. koo 22.2349298 0.15
% ko3 22.2349798 0.10 E
! koy 22.2350298 0.05 %

kog 22.2350798 0.00
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Fig. 3: The estimated number of independant kernels,
dependant upon the number of measurements, for
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